
Fig. 1

1.Introduction

• Bayesian methods for fitting hierarchical models to POP-PK data are 
often considered in contrast to the maximum likelihood methods
employed by widely used software such as NONMEM. 

• In a Bayesian approach, parameters of a mathematical model are 
considered as probability distributions, P(θ), which reflect the degree 
of uncertainty of the parameter value. 

• In a modelling exercise there is also data, y, which is described by a 
likelihood function (the mathematical model)

• In a Bayesian analysis, we attempt to assess how the data should 
change our opinion as to what the parameter distributions are, in other 
words…

• …the prior parameter distributions are updated to posterior distributions 
via the influence of the data (Fig. 1).
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2.Modelling context 

• Efforts are ongoing to model the PK of “drug X” in a physiologically 
based manner in animal and human. 

• The available human PK datasets amenable to physiologically based 
modelling (i.e. containing exposure data for key tissues as well as 
plasma) are sparse and variable in nature and demand a mixed 
effects (POP-PK) approach to make fullest use of them

• An empirical modelling exercise was therefore undertaken to:

• provide the best descriptions of the available human data 
amenable to PBPK modelling 

• provide forcing functions for use in an open loop PBPK 
paradigm. 

• Prior to analysis of the phase IIb data, richly sampled data from phase I 
clinical trials of “drug x” was modelled using a POP-PK approach to 
enable model selection.

5. Initial Bayesian analysis of phase IIb dataset

• In a Bayesian analysis of the phase IIb data, prior information for the 
parameters describing the 3-compartment PK shown in the earlier 
phase studies (Cl, Q12, Q13, V1, V2, V3) can be carried forward into 
a 4-compartment analysis of the longer timecourse, Phase II study. 

• The initial results of the Bayesian analysis are satisfactory, providing 
a description of the phase IIb dataset that captures the long terminal 
phase seen on this timescale and remains consistent with earlier data 
modelling. 

• Problems remain with the convergence of the sampling chains in this 
analysis. Some issues were resolved using the WinBUGS ‘CUT’
function to allow the data from phase II dataset only to update the 
parameters related to the 4th phase (i.e. V4 and Q4 in macro 
parameterisation) and various other options are being investigated 
to improve the convergence of the chains (e.g. incorporation of a 
background level of Strontium into the model, censoring of data that 
reflects non-compliance with the dosing regimen etc.). 

4. Initial modelling of phase IIb dataset

• Initial efforts to model a longer timecourse, sparsely sampled Phase II 
dataset encountered difficulties. 

• A simulation of the longer timecourse study, using the 3-
compartment model parameters obtained from the analysis of the 
earlier phase I studies offered some explanation (Fig. 3).

3.Initial empirical modelling 
• Data from phase I clinical trials was modelled using a POP-PK 

approach with an empirical 3-compartment, mammillary model in 
WinBUGS, using uninformative priors, analysing IV infusion, PO single 
dose and PO multiple dosing regimes in a single run (Fig. 2).  
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Fig 2.   POP-PK modelling of Phase I clinical trial 
data for “drug X”. Lines indicate median, 
and 90% confidence interval for 
predictive check of estimates of 
population parameters and their 
variability.

• The data and intersubject variability 
were reasonably described and 
acceptable goodness of fit and 
MCMC chain convergence criteria 
were achieved 

Fig 3. 
Simulation of phase IIb
study timecourse using 
parameters obtained from 
analysis of earlier phase 
studies. 

A = steady state exposure 
during dosing period 

B = longer term exposure 
after dosing period
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• Steady state exposure during the dosing period (Fig 3. region A) is 
reasonably well described using the earlier study parameters 
indicating Cltot is broadly similar in the two datasets.

• However there is strong evidence for a 4th, extended phase visible 
only in the longer timecourse study (Fig 3. region B) making a 
relatively minor contribution to the overall AUC.

• It is of particular interest to describe this extended terminal phase 
accurately, especially if long term predictions of exposure are required. 

• Reconciling the two datasets given their different timescales proves 
difficult with a standard POP-PK approach: the richly sampled, short 
timecourse datasets contain information for the initial 3 phases but lack 
information on the fourth, and vice versa for the sparsely sampled, long 
timecourse dataset.

Fig 4. 
Initial results from a 4 
compartment model fitting 
to a phase II Strontium 
exposure dataset using 
informative priors.
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• Mathematically, this is achieved in the WinBUGS software package 
through direct sampling from the Bayesian network of posterior 
distributions using a specialised Markov Chain Monte Carlo (MCMC)
algorithm called the Gibbs sampler.
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